Constraints on B and Higgs Physics in MSSM

A. Menon

Argonne National Laboratory and the University of Chicago

March 31, 2006

Outline

- 1. The effective resummed MSSM Lagrangian.
- 2. Contributions to ΔM_s and $B_s \to \mu^+ \mu^-$ in MSSM.
- 3. $\mathcal{B}R(B_s \to \mu^+\mu^-)$ and ΔM_s in the MSSM.
- 4. $b \rightarrow s\gamma$ and $B_s \rightarrow \mu^+\mu^-$ constraints on Higgs searches.

Based on:

M. Carena, A. Menon, R. Noriega-Papaqui, A. Szynkman and C. Wagner, [arXiv:hep-ph/0603107];

The Effective Resummed MSSM Lagrangian

 Resumming the SUSY loop corrections to the quark masses leads to an effective mass Lagrangian for the down quarks.

$$-\mathcal{L}_m = \bar{d}_R \mathbf{m_d} [1 + \tan \beta \left(\epsilon_0 + \mathbf{V}_0^{\dagger} \epsilon_{\mathbf{Y}} |\mathbf{Y}_{\mathbf{u}}|^2 \mathbf{V}_0 \right)] d_L + h.c.$$

where V_0 is the tree-level CKM matrix and for uniform squark masses

$$|\epsilon_0| pprox rac{2lpha_s}{3\pi} |M_3| |\mu| C_0(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, |M_3|^2)$$

$$|\epsilon_Y| pprox rac{1}{16\pi^2} |A_t| |\mu| C_0(m_{ ilde{t}_1}^2, m_{ ilde{t}_2}^2, |\mu|^2)$$

• The quark mass matrices need to be rediagonalized. Thereby inducing Flavor Changing Neutral Currents (FCNC) $\propto V^{3J*}V^{3I}$.

Contributions to ΔM_s and $B_s \to \mu^+\mu^-$ in MSSM

- At large $\tan \beta$ the double penguin contribution to ΔM_s is dominant and $\propto |\epsilon_Y|^2 \tan^4 \beta/M_A^2$, which interferes destructively with the SM.
- Similarly for large $\tan\beta$ the dominant contribution to $B_s \to \mu^+\mu^- \propto |\epsilon_Y|^2 \tan^6\beta/M_A^4$
- Therefore values of $B_s \to \mu^+\mu^-$ and ΔM_s at large $\tan\beta$ are correlated. So for uniform squark masses the only SUSY dependence in their ratio is

$$rac{\Delta M_s}{\mathcal{B}\mathcal{R}(B_s
ightarrow \mu^+\mu^-)} \propto rac{M_A^2}{ an^2eta}$$

• For moderate or low $\tan \beta$ the large contributions to ΔM_s are possible for light stops, charginos or gluinos.

The $B_s \to \mu^+ \mu^-$ bound and its constraint on double penguin contributions to ΔM_s

• The experimental bound on $\mathcal{BR}(B_s \to \mu^+ \mu^-) \le 1.5 \times 10^{-7}$. R. Bernhard *et al.* [CDF Collaboration], [arXiv:hep-ex/0508058];

- The D0 experimental bound on $\Delta M_s = (19 \pm 2) \mathrm{ps}^{-1}$. V. Abazov et al. [D0 Collaboration], [arXiv:hep-ex/0603029];
- The SM allowed range is $15.6 \mathrm{ps^{-1}} \geq \Delta M_s \leq 29.7 \mathrm{ps^{-1}}$ with a central value $18 \mathrm{ps^{-1}}$. J. Charles *et al.* [CKMfitter Group], Eur. Phys. J. C **41**, 1 (2005) [arXiv:hep-ph/0406184];
- Large double penguin contributions to ΔM_s that do not violate the $B_s \to \mu^+ \mu^-$ bound require large ϵ_Y and $\epsilon_0 \Rightarrow M_3 \sim 2 M_{\tilde{q}} \sim \mu$. Also these contributions subtract from the SM.

ΔM_s in the light stop scenario

- Light stops and charginos can give large contributions to ΔM_s even for low values of tan β .
- However this kind of SUSY particle spectrum can induce large contributions to ϵ_K for SM CP phase $\sim \pi/3$.
- The experimentally measured value of $\epsilon_K = (2.282 \pm 0.014) \times 10^{-3}$

$b \rightarrow s \gamma$ and $B_s \rightarrow \mu^+ \mu^-$ constraints on Higgs searches at the Tevatron

- The experimental bound on $\mathcal{BR}(b \to s\gamma) = 3.38^{+0.3}_{-2.8} \times 10^{-4}$.
- The theoretical error on the SM value: $\mathcal{BR}(b \to s\gamma)^{Exp} \mathcal{BR}(b \to s\gamma)^{SM} \le 1 \times 10^{-4}$.

 M. Neubert, Eur. Phys. J. C **40**, 165 (2005), [arXiv:hep-ph/0408179]
- The Charged Higgs is approximately $\tan \beta$ independent and adds to the SM value of $b \to s \gamma$.
- While the Chargino-Stop contribution grows with $\tan \beta$ and for negative μA_t subtracts from the SM value. Therefore by varying μA_t and $\tan \beta$ the SUSY contributions can approximately cancel each other.
- ullet The Tevatron reach at large aneta can be calculated approximately using the relation

$$\sigma(gg, b\overline{b} \to A) \times \mathcal{BR}(A \to \tau^+\tau^-) \sim \sigma(gg, b\overline{b} \to A)_{SM} \frac{\tan^2 \beta}{(1 + \epsilon_0 \tan \beta)^2 + 9}$$

M. Carena et al., [arXiv:hep-ph/0511023]

The Maximal Mixing Scenario

- The Maximal Mixing scenario is one in which the mass of the lightest CP even Higgs is maximized, due maximal mixing in the stop sector.
- The SUSY parameters in this scenario are

$$M_{SUSY} = 1 \text{TeV}, \ |M_3| = 0.8 M_{SUSY}, \ M_A \le 1000 \text{GeV},$$
 $\mu \ll 1 \text{TeV}, \ X_t = A_t - \frac{\mu}{\tan \beta} = \sqrt{6} M_{SUSY} = 2.4 \text{TeV}$

The Minimal Mixing scenario

- The Minimal Mixing scenario has not mixing in the stop sector. Therefore the lightest CP even higgs has a mass close to the LEP bound. The SUSY parameters are the same as Maximal Mixing except $X_t = 0$ and $\mu \ge 1$ TeV.
- $\mathcal{BR}(B_s \to \mu^+\mu^-) \propto A_t$, and so puts no constraint on the M_A tan β plane.
- The Charged Higgs amplitude for $b \to s\gamma$ is also small for large μ, M_3 and $\tan \beta$ as:

$$A_{H+} \propto 1 - rac{2lpha_s}{3\pi}\mu M_3 aneta \left(\cos^2 heta_{ ilde{t}} C_0(m_{ ilde{s}_L}^2, m_{ ilde{t}_1}^2, M_3^2) + \sin^2 heta_{ ilde{t}} C_0(m_{ ilde{s}_L}^2, m_{ ilde{t}_2}^2, M_3^2)
ight).$$

• For these SUSY values the Chargino-Stop contribution is also small.

Conclusions

- Within the MSSM the measurement of ΔM_s at D0 and the CDF bound on $B_s \to \mu^+ \mu^-$ are self consistent.
- Searches for Non Standard Model Higgses at the Tevatron are highly constrained for the Maximal Mixing scenario.
- But the Minimal Mixing scenario looks much more promising.
- Observation of a Non Standard Model Higgs at the Tevatron would imply either moderate values of X_t for small μ or vice versa.